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(2013) demonstrated that many previous studies may
simply be insensitive to systematic deviations from
optimal: In a typical motor decision task (Trom-
mershäuser et al., 2003), a virtual subject who had a
Gaussian motor error distribution but who mistakenly
assumed as her internal model a uniform cylindrical
distribution would still be able to achieve near-
optimality (Zhang et al., 2013).

Zhang et al. (2013) developed a choice task that in
principle allowed them to estimate the anisotropy
(direction of elongation) of the subjects’ internal model
from choice data. They used this task to measure the
anisotropy of subjects’ internal models of the distribution
(probability density function) of visuo-motor error in a
speeded reaching movement. The logic of their test (in a
simplified, qualitative version) is illustrated in Figure 1A.

Subjects’ true error distributions were vertically
elongated. If a subject’s internal model were correctly
vertically elongated (first row), the subject would judge
her chances of hitting the vertical rectangular target to
be greater than her chances of hitting the horizontal
rectangular target (the probabilities in this example are
0.78 and 0.52). If she incorrectly believed that her
motor error was isotropic, she would be indifferent
between the targets. Zhang et al. (2013) found that 17
out of 18 subjects were insensitive to the anisotropy in
their true distribution and that they incorrectly
assumed an isotropic model.

Isotropy bias

We call this phenomenon isotropy bias. Similar
failure to compensate for the anisotropy in speeded
reaching movements was present in the results of
Hudson, Tassinari, and Landy (2010), where the
anisotropy was artificially introduced into the subjects’
visuo-motor error by jittering the display screen. But
why should subjects’ internal models have such
systematic deviations from true? And is the isotropy
bias specific to reaching movements, or is it present in
other visuo-motor tasks?

Possibility one

The isotropy bias is adaptive, reflecting the influence
of a prior belief shaped by previous experience. That is,
an isotropic internal model may be consistent with
subjects’ typical experience in similar reaching tasks
outside laboratory settings. Indeed, the motor error
distribution in several previously studied speeded
reaching movements was indistinguishable from isotro-
pic (e.g., Trommershäuser et al., 2003). Still, we cannot
expect that all error distributions in reaching tasks are
isotropic: According to Schmidt’s law for speeded
movements (Schmidt, Zelaznik, Hawkins, Frank, &
Quinn, 1979), the motor variance parallel to the

movement direction should be larger than that perpen-
dicular to the movement direction (e.g., the vertically
elongated distribution found by Zhang et al., 2013).

Possibility two

The isotropy bias arises from constraints in human
cognition. The literature of categorical learning sug-
gests that people have difficulty in spontaneously
learning two-dimensional probability distributions
(Ashby, Queller, & Berretty, 1999; Goudbeek, Cutler,
& Smits, 2008; Jüttner & Rentschler, 1996). This
constraint could be the cognitive limitation behind the
isotropy bias. In effect, subjects choose to represent a
two-dimensional objective visuo-motor error distribu-
tion as a one-dimensional distribution.

Goals

1. Testing isotropy bias

The first goal of the present study is to understand
whether the isotropy bias observed in speeded reaching
movements is due to adaptive behaviors or cognitive
constraints—a problem on Marr’s (1982) computa-
tional-theory level. To tell apart these two possibilities,
we investigated a second motor task that is somewhat
less common in everyday life: underhand throwing
(Figure 1B). The sources of error in movement in the
horizontal and vertical directions are very different,
and it was plausible we would find large anisotropies.

Horizontal error in this task is primarily a conse-
quence of misorientation of the plane in which the arm
swings, while vertical error—in contrast—is determined
by the timing of release and velocity of the hand at the
release point. Given that the two components of error
are generated by very different neural mechanisms,
there is little reason to expect that error distributions
would be isotropic. If there were no cognitive limits on
their learning ability, subjects should be able to choose
anisotropic internal models if, in fact, their actual error
distributions were markedly anisotropic.

2. Testing transfer

Our second goal was to test whether subjects could
correctly transfer their internal model of error distri-
bution—correct or incorrect—to a task situation they
had never experienced—a task that effectively required
a scaling of the isotropy of the motor distribution. We
did this as a way to uncover the possible cognitive
constraints on the representation of motor distributions
(Maloney & Mamassian, 2009; Zhang, Paily, &
Maloney, 2015). Although transfer of motor skills is
well documented (Schmidt & Lee, 2005), the transfer of
humans’ knowledge of their own motor uncertainty
had rarely been studied before. Such transfer is an
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Of course, there are at least two ways the visual
system can effectively transfer in our tasks. The subject
may scale the internal model of visuo-motor error or
alternatively apply a reciprocal scaling to the target.
For our purposes these are equivalent, and we refer to
both as transfer.

3. Coordinate systems

Our third goal was to investigate the coordinate
system used to represent visuo-motor error. We will
present results in terms of Cartesian coordinates
/(x, y). However, there is little reason to believe that
the visuo-motor system uses a Cartesian representation,
and—as we will see—our results indicate that a one-
dimensional coordinate system similar to polar coor-
dinates (r, h) but with only the single parameter r better
accounts for our data.

Estimating internal models

We employed the choice task developed by Zhang et
al. (2013): After training on beanbag throwing, subjects
were asked to choose between pairs of virtual targets
differing in size and configuration (Figure 1C). Hitting
either target would earn the same reward, and subjects’
task was in effect to decide which of the two targets
offered the greater probability of earning the reward.
Since these choices trade off the chances of hitting
different locations, subjects’ choices between a specific
pair of targets would depend on their internal model of
their own visuo-motor error distribution. Conversely,
based on these choices we could gain information about
a subject’s internal model (Maloney & Mamassian,
2009; Zhang et al., 2013) and compare it with the
subject’s true visuo-motor error distribution in training.

Subjects’ visuo-motor error in beanbag throwing was
distributed as a bivariate Gaussian, vertically elongat-
ed. In Figure 2A we summarize the expected results for
an ideal movement planner: The internal distribution
matches the external and is transferred correctly. In
Figure 2B we summarize what actually occurred in the
experiment: Estimates of subjects’ internal distributions
were close to isotropic. Finally, they correctly trans-
formed their incorrect, isotropic estimates to the new
position. They were wrong, but they were consistent.

Methods

Ethics statement

The experiment adhered to the tenets of the
Declaration of Helsinki and was approved by the
University Committee on Activities Involving Human

Subjects of New York University. All subjects gave
informed consent prior to the experiment.

Subjects

Fifteen subjects—eight male and seven female, aged
18 to 36 (median 22)—participated. All had normal or
corrected-to-normal vision and were right-handed.
None reported considerable experience with underhand
throwing. Subjects were unaware of the purpose of the
experiment. Subjects received US$12 per hour plus a
performance-related bonus.

Apparatus and stimuli

Stimuli were presented on a 22-in. (47.6 3 30.2 cm)
monitor mounted on the wall, the center of which was
1.3 m above the ground. The monitor was covered with
a CycloTouch Multi-touch Screen Overlay Kit to make
it equivalent to a touch screen. We stabilized the
monitor to ensure that it would not appreciably move
or vibrate in response to the impact of flying beanbags.
Beanbags were uniform balls with a diameter of 6.4 cm

Figure 2. Summary of ideal and actual results. (A) Ideal

movement planner. (B) Real subjects. Each ellipse represents a

one-standard-deviation contour of a bivariate Gaussian distri-

bution (arbitrary unit). ‘‘True’’ denotes the observer’s true

visuo-motor error distribution in the throwing task. ‘‘Choice
Model’’ and ‘‘New Model’’ respectvely denote the observer’s

internal model of visuo-motor error distribution at the choice

and new positions. Subjects tended to underestimate their

visuo-motor variance in the choice task. They also incorrectly

assumed that their distributions were isotropic. However, the

anisotropy they assumed at the new position agreed with an

objectively correct transfer of an isotropic distribution.
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and a mass of 130 g. Targets for the throwing or choice
tasks were blue filled shapes, whose center was marked
with a small yellow diamond (0.5 3 0.5 cm). Targets
were presented at the center of the screen on a black
background. The Psychophysics Toolbox (Brainard,
1997; Pelli, 1997) was used to control the experiment.
The endpoints of the thrown beanbags were recorded
using the Multi-touch Screen Overlay Kit.

Procedure and design

Each subject completed three phases: training,
choice, and transfer. The whole experiment took
approximately 2.5 hr.

Training phase

In the training phase, subjects stood 1.3 m away
from and at 908 to the screen (Figure 1B). On each trial,
their task was to throw a beanbag underhand to hit the
target on the screen. When the beanbag impacted the
screen, the target disappeared and was followed by a
visual feedback of 2 s: A white (in the case of hit) or red
(in the case of miss) dot indicated the endpoint of the
beanbag. If the beanbag missed the screen entirely, the
experimenter pressed a key and the subject saw the text
‘‘OUT.’’

The target was a circle (radius 4.4 cm), a horizontal
rectangle (13.9 3 3.5 cm), or a vertical rectangle (3.5 3
13.9 cm). Each subject completed 300 throwing trials,
with each target repeated 100 times in random order.
The training phase allowed both subjects and us to
assess subjects’ visuo-motor error distributions.

We required subjects to use their right hand to
throw, with their feet parallel, together, and stationary,
their right shoulder aligned with the center of the
screen, and their right arm kept close to their side.
Feedback marking the mean endpoint was shown on
the screen for every 15 throws. To reduce fatigue, we
asked subjects to take a 15-s break after every 15 trials
and whenever they felt tired. Subjects were monetarily
motivated to make accurate throws: They knew that at
the end of the training, two trials would be randomly
drawn from their 300 trials as bonus trials, for each of
which—if they had hit the target on that trial—they
would win an additional $2.

Choice phase

The choice phase took place immediately after the
training phase. On each trial, the subject stood at the
position where she was trained in throwing (choice
position), facing the screen, beanbag in her right hand.
The task was to choose, given a pair of targets
(rectangle and circle), the target that was easier to hit.
The time course of the task is shown in Figure 1C. The

order of the circle and the rectangle was randomized
across trials. Subjects were prompted to answer the
question ‘‘Which is easier to hit? First or second?’’ The
experimenter recorded subjects’ verbal responses by
key press.

The rectangle had four possible sizes: its shorter side
was 2.9, 3.9, 5.3, or 7.1 cm, and its long side was 4 times
the length of its shorter side. The rectangle had two
possible orientations: horizontal or vertical. For each
of these eight rectangles, we varied the radius of the
paired circle using a one-up/one-down adaptive stair-
case procedure that terminated after 60 trials. All
staircases were randomly mixed and resulted in 8360¼
480 trials in total.

At the end of the choice phase, subjects attempted to
hit the chosen targets from eight of their choice trials
picked at random. Subjects won $2 for each successful
hit.

Transfer phase

Subjects then moved to a new position, to their right,
that had the same distance from the center of the screen
but a 458 viewpoint to the screen (Figure 1D, right). As
in the choice phase, they were asked to choose which of
two targets would be easier to hit if they threw from the
new position. The choice trials in the transfer phase
(the new position) were the same as in the choice phase
(the choice position).

Preanalyses for individual subjects

True visuo-motor error distribution

The subjects’ horizontal and vertical errors de-
creased across training. We modeled this visuo-motor
learning as follows. Denote the horizontal and vertical
errors of subjects’ endpoint (i.e., deviations from the
center of the target) as (x, y). We modeled (x, y) in the
throwing task as a bivariate Gaussian random variable
centered at (0, 0) with standard deviations that
decreased as exponential functions of the trial number
t, separately for the horizontal and vertical directions.

To estimate the exponential learning functions, we
first divided the 300 throwing trials into 20 bins of 15
trials. We assumed that the (x, y) values of the ith bin Bi

was generated by the bivariate Gaussian distribution:

/Bi
ðx; yÞ ¼ 1

2prBi
x rBi

y

exp � x2

2ðrBi
x Þ2
� y2

2ðrBi
y Þ2

 !
:

ð2Þ
In the throwing task, one subject had 14% and all the

other subjects had less than 5% of their throws miss the
screen. When the beanbag missed the screen entirely,
we had no records of (x, y) and only knew that the
endpoint was outside the screen region S. The
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likelihood that the endpoint E was observed on a
specific trial was therefore

fðEjrBi
x ; r

Bi
y Þ

¼
/Bi
ðx; yÞ; if E is on the screen

1�
Z
S

/Bi
ðx; yÞ; if E is outside the screen

8><
>: ð3Þ

We estimated rBi
x and rBi

y for each bin using maximum-
likelihood estimates.

We then fitted rBi
x and rBi

y to three-parameter
exponential functions of trial number t:

rxðtÞ ¼ hx þ jxe
�txt

ryðtÞ ¼ hy þ jye
�tyt;

ð4Þ

where hx, jx, tx, hy, jy, and ty are free parameters, and
the trial number of the ith bin is defined as the central
number of the bin t¼ 8 þ 15(i – 1). With the fitted
Equation 4, we could estimate the standard deviations
for any trial.

Subjects’ internal model of visuo-motor error distribution

We assume that subjects choose targets that maximize
their probability of winning. The visual errors in
perceiving the configuration of the targets are omitted.
We define subjects’ internal model of their visuo-motor
error distribution (subjective error distribution) as the
distribution that predicts subjects’ choices between
targets (Maloney & Mamassian, 2009), and use the
pattern of choices to estimate the subjective distribution.

We estimated subjects’ internal models of their
visuo-motor error for the choice position and the new
position separately, each as a bivariate Gaussian
distribution:

wðx; yjrx; ryÞ ¼
1

2prxry
exp � x2

2ðrxÞ2
� y2

2ðryÞ2

 !
;

ð5Þ
where rx and ry are free parameters, denoted rC

x and rC
y

for the choice position and rN
x and rN

y for the new
position.

We assume subjects would aim at the center of the
target. For a specific trial with targets T1 and T2, the
perceived probabilities p1 and p2 of hitting them were
the integrals of the probability density of the subjective
visuo-motor error distribution contained in the targets:

p1 ¼
Z
T1

wðx; yjrx;ryÞdxdy;

p2 ¼
Z
T2

wðx; yjrx; ryÞdxdy
ð6Þ

We modeled subjects’ choice on the trial as a
Bernoulli random variable, with the probability of
choosing T2 as a logistic function of p1� p2 following
the normalized expected utility model (Erev, Roth,
Slonim, & Barron, 2002):

PrðT2Þ ¼
1

1þ eðp1�p2Þ=ðsDÞ
; ð7Þ

where D ¼ p1ð1� p2Þ þ ð1� p1Þp2 is a normalization
term and s . 0 is a temperature parameter determining
the randomness of the choice—the lower the temper-
ature, the closer the subject to an ideal observer who
always chooses the target that is more likely to be hit.
We estimated s, rC

x , and rC
y (or rN

x and rN
y ) using

maximum-likelihood estimates.

Exclusion of subjects

Two types of subjects were excluded from the group
analyses of the choice task because their subjective
error distributions were not estimable from their
choices. First, we excluded subjects who violated
dominance, i.e., those who preferred the circle even
when the circle was small enough to be contained in,
and thus dominated by, the rectangle, or vice versa. A
subject would be excluded if she still preferred the circle
when the diameter of the circle was 20% less than the
shorter side of the rectangle or still preferred the
rectangle when the diameter of the circle was 20%
greater than the longer side of the rectangle. The
subjective error distribution was undefined for subjects
who violated dominance. One subject was excluded for
violating dominance.

Second, we excluded subjects whose choices were
indistinguishable from those predicted by an area-
matching strategy. Subjects with an area-matching
strategy would choose the target with the larger area.
Subjects’ choice on a specific trial was modeled as a
Bernoulli random variable, with the probability of
choosing T2 determined by

PrðT2Þ ¼
1

1þ eðA1�A2Þ=
�
sðA1þA2Þ

� ; ð8Þ

where A1 and A2 are the areas of the targets T1 and T2

and s . 0 is a temperature parameter determining the
randomness of the choice. We estimated s using
maximum-likelihood estimates. We compared the
Gaussian model (Equation 5) with the area-matching
model in goodness of fit using nested hypothesis tests
(Mood, Graybill, & Boes, 1974, p. 440). If a subject’s
Gaussian model did not fit better than her area-
matching model at the 0.05 significance level, we
excluded the subject. Two subjects were excluded at the
choice position and one additional subject was excluded
at the new position. These subjects might really have
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used an area-matching strategy so that their choices did
not rely on their internal models of visuo-motor error
distribution, or they might simply have assumed rC

x and
rC
y (or rN

x and rN
y ) that were much larger than the sizes

of the targets. In either case, their internal models were
unidentifiable from their choices.

Results

True visuo-motor error distribution

Subjects were trained to throw beanbags underhand
for 300 trials. Figure 3A shows the distribution of one
typical subject’s endpoints. It is a bivariate Gaussian
distribution, elongated in the vertical direction.

We modeled how the standard deviations of subjects’
visuo-motor error decreased across training (see
Methods). Figure 3B shows the horizontal and vertical
standard deviations of the typical subject as exponen-
tial functions of the trial number. For this subject, the
vertical direction exhibited more rapid improvement
than the horizontal direction, and performance stabi-
lized after approximately 50 trials. These results
confirm that—in the throwing task—horizontal and
vertical errors behave differently and there is little
reason to expect isotropy. Some other subjects had a
greater improvement in the horizontal direction instead
(see Figure 4 for all subjects’ curves).

Denote the horizontal and vertical standard devia-
tions estimated at the end of the training phase as rT

x
and rT

y (‘‘T’’ stands for ‘‘true’’). We define the overall

standard deviation as rT¼
ffiffiffiffiffiffiffiffiffiffiffi
rT
xrT

y

q
and the vertical-to-

Figure 3. True visuo-motor error distribution. (A) Endpoints for one subject. Each dot denotes an endpoint on the screen. The yellow

diamond marks the center of the screen and the target. (B) Standard deviations of visuo-motor error as functions of trial number for

one subject. Blue and green are respectively for the horizontal and vertical directions. Dots denote standard deviations estimated in

bins of 15 trials. Curves denote exponential fits (see Methods). (C) Vertical versus horizontal standard deviations at the end of training

(i.e., t¼ 300). Each dot denotes one subject. Note that all subjects had a vertically elongated distribution. (D) Vertical-to-horizontal

ratio as a function of trial number. The solid line denotes median ratios across subjects. Dashed lines denote the minimum and

maximum ratio across subjects.
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Transfer of the anisotropy estimate

According to an objectively correct transfer from the
training to the new position, we should have
bN ¼ bC=

ffiffiffi
2
p

. But as Figure 5C shows, the value of bN

was constantly around 1=
ffiffiffi
2
p

(0.71), irrespective of the
value of bC. This observation was confirmed by the
following model comparison procedure.

We considered four possible hypotheses concerning
transfer:

H1 : bN ¼ 1=
ffiffiffi
2
p
þ e;

H2 : bN ¼ 1þ e;
H3 : bN ¼ 1=

ffiffiffi
2
p

bC þ e;
H4 : bN ¼ bC þ e

ð9Þ

where e is a zero-mean Gaussian error term whose
variance is a free parameter. We fitted the four models
using maximum-likelihood estimates to predict the
values of bN. H1 was the best among the four models
according to the estimated likelihood: When the outlier
subject (circled in Figure 5C, same as in Figure 5A) was
excluded, H1 was 289 times more likely than the second
best model to produce the observed values of bN; when
the outlier subject was not excluded, the likelihood
ratio of H1 to the second best model was 1,321. We
conclude that subjects assumed a different vertical-to-
horizontal ratio in their internal model at the new
position from that of the choice position, but instead of
transforming the ratio they had learned to the new
position, they transformed an isotropic model in the
objectively correct way to the new position.

Coordinate systems for visuo-motor error

The values of rC
x and rC

y were highly correlated
(Pearson’s r¼ 0.89, p , 0.001), as were rN

x and rN
y

(Pearson’s r¼ 0.92, p , 0.001), while the Pearson’s
correlation between rT

x and rT
y was only r¼ 0.58, p¼

0.048 (computed for the valid subjects at the choice
position; the correlation for the valid subjects at the
new position was r ¼ 0.62, p ¼ 0.041).

The medium-size correlation between rT
x and rT

y was
expected: There was little reason to expect that
different subjects had the same vertical-to-horizontal
ratio for their motor variances. If subjects had
estimated their horizontal and vertical variances
independently, we would expect that the correlations
between parameters of the subjects’ model distributions
would be no higher than those of their true distribu-
tions, since the former—based on the latter—would be
further corrupted by visuo-motor or neural noise:
Correlation should not increase.

However, according to bootstrapping tests (Efron &
Tibshirani, 1993), the correlations between horizontal
and vertical standard deviations in subjects’ internal

models were marginally significantly higher than that of
the true distribution (one-tailed test, p¼ 0.084 and p¼
0.065, respectively, for the choice and new positions).
The two results taken together would be expected no
more than p¼ 0.0055 of the time if the null hypothesis
of independence of horizontal and vertical directions
were true.

These results suggest that a single parameter r
controls both vertical and horizontal standard devia-
tions. Indeed, if the visuo-motor system uses an
isotropic representation, then there would be no reason
to have two separate parameters rx and ry for
horizontal and vertical variances—they must be equal.
Moreover, if the isotropy assumption were correct,
then the visuo-motor system could combine estimates
of vertical and horizontal deviations across trials to get
a more accurate estimate of r.

In the following analyses, we used the overall
standard deviation (rT, rC, and rN) as the variance
estimate for the true distribution and subjects’ models.
Results based on the horizontal and vertical standard
deviations were similar.

Learning and transfer of the variance estimate

How were subjects’ internal models built upon their
experience in training? How were subjects’ internal
models at the new position related to their internal
models at the choice position? The most obvious
attempts led to negative results: No significant corre-
lations were found between rC

x and rT
x , rC

y and rT
y , rC

x
and rt

x, or rC
y and rt

y for any trial number t (Pearson’s
correlation p . 0.52). The standard deviations assumed
in subjects’ internal models at the new position could
not be predicted by those at the old position either:
There were no significant correlations between rN

x andffiffiffi
2
p

rC
x , nor between rN

y and rC
y (Pearson’s correlation ps

. 0.23).
Subjects’ visuo-motor variance decreased across

training (Figures 3B and 4). Here we introduced
second-order measures concerning the change rate of
visuo-motor variance at trial number t: horizontal rate

dtx ¼ rt
x=r

t�1
x , vertical rate dty ¼ rt

y=r
t�1
y , and overall

rate dtxy ¼
ffiffiffiffiffiffiffiffiffi
dtxd

t
y

q
. The lower the change rate, the faster

the decrease in visuo-motor variance. A change rate of
1 means no improvement in visuo-motor variance.

We found that how much the variance assumed in
subjects’ internal model over- or underestimated the
true variance could be predicted by the vertical change
rate but not by the horizontal or overall change rate. As
we considered how subjects misrepresented their
variance at the new position, relative to that predicted
from the objectively correct transfer, we found that,
again, the vertical change rate but not the horizontal or
overall change rate of true variance proved to be a
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significant predictor. See the Appendix and Figure 6 for
details.

Discussion

We investigated how people learn and represent
internal models of their own visuo-motor error
distribution and how they transfer these models to

novel situations. Subjects were first trained in an
underhand beanbag-throwing task, and we tracked
their visuo-motor error distribution from trial to trial.
We then asked subjects to choose between pairs of
targets while standing at the trained (choice) position
or at an untrained new position. Based on their choices,
we could estimate the anisotropy of their internal
models of visuo-motor error distribution at the choice
and new positions (Maloney & Mamassian, 2009;
Zhang et al., 2013).

Figure 6. Standard deviations assumed in the internal model. The symbols dtx, dty, and dtxy denote the change rate of true standard

deviations at trial number t, respectively, for the horizontal direction, the vertical direction, and overall (i.e., dtxy ¼
ffiffiffiffiffiffiffiffiffi
dtxd

t
y

q
). (A)

Learning. Left: Pearson’s correlation between the misestimation of true standard deviation at the choice position (rC=rT ) and the

change rates. The horizontal line marks the significance level of 0.05. The correlation was significant only for the vertical change rate

(green curve) in the second half of the training phase. A 75-trial range of the most prominent correlations was from trial 225 to trial

300. Right: The correlation rC=rT predicted by r300
y =r225

y . Each dot denotes one subject. Solid line denotes the linear prediction.

Shadow denotes its 95% confidence interval. (B) Transfer. Left: Pearson’s correlation between the mistransfer of standard deviation

from the choice position to the new position (rN=rC) and the change rates. The horizontal line marks the significance level of .05. The

correlation was significant only for the vertical change rate (green curve) in the second quarter of the training phase. A 75-trial range

of the most prominent correlations was from trial 85 to trial 160. Right: The correlation rN=rC predicted by r160
y =r85

y . Each dot

denotes one subject. Solid line denotes the linear prediction. Shadow denotes its 95% confidence interval.
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All subjects’ visuo-motor error distributions were
vertically elongated (anisotropic) bivariate Gaussian.
At the end of training, the vertical standard deviation
was, on average, 1.84 times the horizontal standard
deviation. However, we found that the internal models
subjects assumed at the choice position were signifi-
cantly less vertically elongated and were indistinguish-
able from isotropic. That is, we replicated the isotropy
bias originally found in the speeded reaching-move-
ment literature (Hudson et al., 2010; Zhang et al., 2013)
in a visuo-motor task that recruits different muscular
components in the vertical and horizontal directions.

One open question is whether observers would
internalize their error distribution better if they
received a different kind of feedback. We do note that
the feedback we gave them is already more than they
might receive in an everyday throwing task (during
training, after each toss, we marked the point they hit
with a dot). But still, it would be of interest to find out
if there is some way to convey to the subjects their
actual error distributions.

The tendency to assume an isotropic distribution in
the overpracticed reaching task might be the result of
adaptive tuning to experience preceding the experi-
ment. That we found the isotropy bias in the
underhand throwing task allows us to exclude this
possibility. It is more likely that subjects had difficulty
learning anisotropic probability distributions. Indeed,
the isotropy bias proved to be highly resistant to
conflicting experience: Subjects were trained on differ-
ent targets, and they hit the vertical targets much more
often than the horizontal targets (on average, 38% vs.
26%).

Intriguingly, subjects’ internal model at the new
position was effectively anisotropic: The vertical-to-
horizontal ratio was indistinguishable from 1=

ffiffiffi
2
p

. It is
as if they incorrectly assumed an isotropic distribution
at the choice position but correctly predicted how this
anisotropy ratio (i.e., 1) would change with their
throwing angles to the screen. Of course, an alternative
strategy they might have pursued would be to scale the
apparent target to match its cross section projected into
the fronto-parallel plane. This strategy would be
indistinguishable from scaling the distribution. A
possible way for subjects to implement this strategy is
to rely on their retinal image for their judgments. Direct
access to the retinal image is uncommon in human
perception but may characterize the motor system
(Goodale & Milner, 1992).

Subjects did not have difficulty in representing or
computing on two-dimensional anisotropic distribu-
tions, which implies, similar to probabilistic inference
(Acerbi, Vijayakumar, & Wolpert, 2014), that the
difficulty is mainly in learning distributions. Of course,
one possibility is that they in effect transform the
target, using its projection as seen from the new

position, and still assume an isotropic distribution. In
the following, we discuss the implications of our results
in terms of cognitive constraints and neural coding.

The isotropy bias: Cognitive constraints

It is well documented that people have difficulty
compensating for bimodal visuo-motor error distribu-
tions: They often treat bimodal distributions as
unimodal (Scheidt, Dingwell, & Mussa-Ivaldi, 2001).
Even if they can finally learn a bimodal distribution, it
may take thousands of trials (Körding & Wolpert,
2004). Similar unimodal bias is also observed in
learning other types of probability distributions
(Flannagan, Fried, & Holyoak, 1986; Nisbett &
Kunda, 1985). It is as if people have expectations for
unimodal distributions before they have any experience
about the distribution to be estimated. It is possible
that the isotropy bias is another type of expectation
embedded in human cognition.

If the isotropy bias reflects subjects’ expectations
when they enter the task, subjects should converge to
an anisotropic distribution to a greater and greater
extent after more and more exposure to the distribu-
tion. Whether this is true is an empirical question to be
further tested. At least according to the present study
and Zhang et al. (2013), 300 trials of training are not
sufficient to eliminate the isotropy bias.

Alternatively, subjects may simply not be able to
estimate the probability distributions of two or more
dimensions simultaneously. Evidence comes from
unsupervised categorization tasks: When there are two
feature dimensions and both are useful for perfect
categorization, subjects’ categorization behavior shows
that they have access to only the distribution of one
dimension and not the joint distribution of the two
dimensions (Ashby et al., 1999; Goudbeek et al., 2008;
Jüttner & Rentschler, 1996). In the case of two-
dimensional visuo-motor error distributions, estimating
the distribution on the radial dimension but omitting it
on the angular dimension would correspond to the
isotropy bias.

Coordinate systems

For subjects’ internal models at both the choice and
new positions, the extremely high positive correlation
between the horizontal and vertical standard deviations
demonstrates that the two directions are not indepen-
dently coded. In effect, one parameter r controls both
the horizontal and vertical standard deviations of the
distributional representation. One possibility is that
polar coordinates (r, h) rather than Cartesian coordi-
nates (x, y) are used in coding two-dimensional
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visuo-motor error distributions. If so, the isotropy bias
is due to the visuo-motor system’s bias to base
judgments on r alone, ignoring direction h. This
possibility echoes the fact that humans typically use
polar coordinates to code spatial locations (Hutten-
locher & Lourenco, 2007).

The existence of the isotropy bias hints that the angle
dimension receives little attention in the coding of
visuo-motor error distributions. We noticed that the
angle dimension also has low priority in spatial coding:
Young children (Sandberg, Huttenlocher, & New-
combe, 1996) and monkeys (Merchant, Fortes, &
Georgopoulos, 2004) use two types of spatial codes for
radius but only one type of code for angle, though they
use both types to code angle when angle is presented
alone.

However, we emphasize that we have no evidence
concerning the second parameter of the ‘‘polar-like’’
coordinate system. Whether it is direction h remains to
be determined.

Keywords: perception and action, movement planning,
visuo-motor uncertainty, representation, transfer, choice
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Appendix

Detailed results on the variance estimate

Learning of the variance estimate

We found that how much the variance assumed in
subjects’ internal model over- or underestimated the
true variance could be predicted by the vertical change
rate but not by the horizontal or overall change rate.
The left panel of Figure 6A shows Pearson’s correla-
tions between rC/rT and dtx (d

t
y, d

t
xy) as a function of the

trial number t. There was a significant negative
correlation between rC/rT and dty for the second half of
the training phase (ps , 0.05). In contrast, for any trial
t, the correlation between rC/rT and dtx and between
rC=rT and dtxy was not significant (ps . 0.41).

The right panel of Figure 6A shows rC/rT as a
linear function of r300

y =r225
y . The measure r300

y =r225
y

reflects the accumulated dty over trial 225 to trial 300,
the 75-trial range with the largest negative correlation
between rC/rT and dty. That rC/rT decreased with r300

y
=r225

y (rC/rT negatively correlated with dty) was
counterintuitive, which means subjects who had a
greater decrease in motor variance would more likely
overestimate their motor variance at the end of
training.

The first explanation that came to our mind for the
negative correlation was a delayed estimation, an idea
that subjects’ internal models failed to catch the quick
change of their motor variance and reflected their
motor variance at an earlier time point. If this were
true, subjects who had a greater decrease in motor
variance would not show a greater overestimation of
variance when the variance at an earlier time point was
used as reference. To test this hypothesis, we replaced
rC/rT with rC/rt and computed the correlation between
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rC/rt and dty for a different trial number t (1–300).
Inconsistent with the prediction of delayed estimation,
the correlation was negative for trials as early as trial 5.

We conjecture that the negative correlation between
rC/rT and dty suggests a reverse effect of the internal
model on motor performance: Subjects who were less
likely to underestimate their motor variance would
have a greater improvement in motor variance. This
hypothesis—that the internal model not only passively
represents motor performance but also guides the
improvement of motor performance—remains to be
tested in the future.

Transfer of the variance estimate

If subjects made the correct transfer (rN
x ¼

ffiffiffi
2
p

rC
x ,

rN
y ¼ rC

y ), they would have rN ¼
ffiffiffi
24
p

rC. The left panel
of Figure 6B shows Pearson’s correlations between
rN=ð

ffiffiffi
24
p

rCÞ and dtx (dty, dtxy) as a function of the trial
number t. There was a significant positive correlation

between rN=ð
ffiffiffi
24
p

rCÞ and dty during the second quarter
of the training phase (ps , 0.05). In contrast, for any
trial t, the positive correlation between rN=ð

ffiffiffi
24
p

rCÞ and
dtx and between rN=ð

ffiffiffi
24
p

rCÞ and dtxy was insignificant
(ps . 0.21).

This positive correlation indicates that subjects who
had a greater decrease in their motor variance would
underestimate their motor variance at the new position
to a greater extent. It is as if subjects were more
optimistic about the new position when they had
experienced a greater improvement during training.
The right panel of Figure 6B shows rN=ð

ffiffiffi
24
p

rCÞ as a
linear function of r160

y =r85
y (the accumulation of dty over

a 75-trial range of the largest positive correlation
between rN=ð

ffiffiffi
24
p

rCÞ and dty). Note that for subjects who
had no improvement in the range (r160

y =r85
y ¼ 1), the

variance assumed in the internal model at the new
position was close to that predicted by the objectively
correct transfer (rN=ð

ffiffiffi
24
p

rCÞ ¼ 1).

Journal of Vision (2015) 15(8):6, 1–15 Zhang, Kulsa, & Maloney 15

Downloaded From: http://jov.arvojournals.org/pdfaccess.ashx?url=/data/Journals/JOV/934120/ on 06/16/2015


	Introduction
	e01
	f01
	Methods
	f02
	e02
	e03
	e04
	e05
	e06
	e07
	e08
	Results
	f03
	f04
	f05
	e09
	Discussion
	f06
	Acerbi1
	Ashby1
	Barthelme1
	Battaglia1
	Brainard1
	Efron1
	Erev1
	Faisal1
	Flannagan1
	Fleming1
	Goodale1
	Goudbeek1
	Hudson1
	Hudson2
	Huttenlocher1
	Jazayeri1
	Juttner1
	Kording1
	Maloney1
	Marr1
	Merchant1
	Mood1
	Nisbett1
	Pelli1
	Sandberg1
	Scheidt1
	Schmidt1
	Schmidt2
	Trommershauser1
	Trommershauser2
	Wei1
	Zhang1
	Zhang2
	Appendix

